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Abstract The ground-state wave function Ψ for a given force constant k = 1/4
a.u. of the two-electron Hookean atom is known in exact analytical form. Here the
corresponding first-order density matrix γ (r, r′) is studied, particular attention being
focussed on its equation of motion. The exact form which results from the known Ψ
is displayed, and given a physical interpretation. Harmonic confined model two-elec-
tron atoms with arbitrary interaction u(r12) are also briefly referred to in the present
context.
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The study of the so-called Hookean atom with two electrons interacting with the
Coulomb repulsion e2/r12 goes back at the very least to the work of Kestner and
Sinanoğlu [1]. The ground-state wave function Ψ (r1, r2) for the assumed harmonic
confinement

Vext(r) = 1

2
kr2 (1)

is known for k = 1
4 a.u. as [2]

Ψ (r1, r2) = C exp(−|r1 + r2|2/8) exp(−|r2 − r1|2/8), (2)

where C = 1/[2π5/4(5π1/2 + 8)1/2] = 0.029112 a.u.
Here, we are interested specifically in the first-order density matrix (1DM) γ (r′, r′′)

corresponding to the wave function Ψ in Eq. (2) as defined by Löwdin [3–5]. A con-
venient form written by Qian and Sahni [6] is given by

γ (r′, r′′) = 2C2 exp

(
−1

4
(r ′2 + r ′′2)

)
∫

dr
(

1 + 1

2
|r′ − r|

) (
1 + 1

2
|r′′ − r|

)
e−r2/2. (3)

To motivate what follows, let us refer here to the early work of March and Young
[7]. For a given one-body potential V (x), these authors wrote, with γs(x ′, x ′′) denoting
their single particle (s) idempotent 1DM, the following equation of motion

∂2γs

∂x ′2 − ∂2γs

∂x ′′2 = 2m

h̄2 [V (x ′)− V (x ′′)]γs . (4)

This leads us, below, but now for the correlated 1DM γ (r′, r′′) given by Eq. (3), to
focus on the ratio R(r′, r′′) defined by

R(r′, r′′) = ∇2
r′γ − ∇2

r′′γ

γ (r′, r′′)
. (5)

Evidently, by insertion of the exact Hookean (H) form Eq. (3) into Eq. (5), the constant
goes out and we find

RH(r′, r′′) = [
Vext(r′)− Vext(r′′)+ F(r′, r′′)

]
, (6)

where RH(r′, r′′) has been calculated explicitly from Eqs. (5) and (3) above as

RH(r′, r′′) = 1

2

∫
dre−r2/2

[(
1 + 1

2 |r′′ − r|) f (r, r′)− f (r, r′′)
(
1 + 1

2 |r′ − r|)]∫
dr

(
1 + 1

2 |r′ − r|) (
1 + 1

2 |r′′ − r|) e−r2/2
,

(7)
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the function f (r, r′) being given by

f (r, r′) = 2

|r′ − r| − 1

2

(r′ − r) · r′

|r′ − r| − r ′2 − 3. (8)

The very recent study of Amovilli and March [8] gives for R(r′, r′′) in Eq. (5) the
general result

R(r′, r′′) = 2m

h̄2

[
V (r′)− V (r′′)+ g(r′, r′′)

]
. (9)

Here, V (r) is the one-body potential of density functional theory (DFT) [9], which
appears because in Eq. (5) the general correlated 1DM γ (r′, r′′) is expanded in the
complete set of normalized Slater-Kohn-Sham [10,11] orbitals ψi (r) generated by
V (r) above as

γ (r′, r′′) =
∑

i j

ni jψi (r′)ψ∗
j (r

′′). (10)

As shown in [8], only the off-diagonal occupation numbers ni j , i �= j , enter g(r′, r′′)
and, in general, for atoms, molecules and clusters, these can be expected to be small
compared to the diagonal elements nii . In fact, for the example of the Hookean atom
with k = 1/4, the DFT potential V (r) ≡ V (|r|) has already been determined in the
work of Kais et al. [12].

Let us conclude by referring to the general treatment of Holas, Howard and March
(HHM) [13] of the model two-electron atom, again with harmonic confinement given
by Eq. (1), but now with general interparticle interaction u(r12). The ground-state
spatial wave function Ψ (r1, r2) takes the form of a product of a centre-of-mass (CM)
contribution ψCM(r1, r2) and a relative motion (r ) part ψr (r1, r2), that is

Ψ (r1, r2) = ψCM(|R|)ψr (r1 − r2). (11)

The CM term has the explicit form (with R = (r1 + r2)/2)

ψCM(R) = 1

a3/2
CMπ

3/4
exp

(
−1

2

R2

a2
CM

)
, (12)

where

a3/2
CM =

(
k

2mω0

)1/2

, (13)

with ω0 = k R/m for constant k in Eq. (1).
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The ground-state electron density ρ(r1) obtained by HHM [13] is given in terms
of quadrature involving the relative motion wave function by

ρ(r1) = 8

π1/2 e−r2
1 /a

2
CM

∞∫
0

dy y2e−y2/4|ψr (aCM y)|2 sinh(r1 y/aCM)

r1 y/aCM
. (14)

The normalization factor
∫

d3r1ρ(r1) = 1 is readily verified from Eq. (14). Fig. 1 of
HHM [13] confirms that Eq. (14) agrees with the known Hookean atom density when
u(r12) = e2/r12.

The off-diagonal form of ρ(r), viz. the exact correlated 1DM obtained in [13],
is also characterized by the relative motion wave function, which satisfies a radial
Schrödinger equation with effective one-body potential given by [13]

Veff(r) = 1

2
mrω

2
0r2 + u(r). (15)

The 1DM has the explicit form in terms of ψCM and ψr as [13]

γ1(r1, r′
1) = 2

∫
dxψCM

(∣∣∣∣1

2

(
x + 2c + 1

2
b
)∣∣∣∣

)
ψCM

(∣∣∣∣1

2

(
x + 2c − 1

2
b
)∣∣∣∣

)

×ψr

(∣∣∣∣x − 1

2
b

∣∣∣∣
)
ψr

(∣∣∣∣x + 1

2
b

∣∣∣∣
)
. (16)

Here, b = r1 − r′
1, c = 1

2 (r1 + r′
1), x = r2 − c. The angular integration is performed

in Eq. (16) but the result is complicated [13].
Let us now conclude by returning to the Hookean atom. Then Eq. (37) of [13] can

be written in the form, for this special case of u(r12) = e2/r12, as

γ (r1, r′
1)

γ (0, 0)
= Ψ (r1, r′

1)

Ψ (0, 0)
χ(r1, r′

1), (17)

where the function χ(r1, r′
1) is determined only by ψCM(R) plus χ(0, 0) = 1.

Thus, the part of the 2DM involved in the Dawson-March (DM) integrodifferential
equation for γ (r1, r′

1), viz. Γ (r1, r1, r′
1, r2), is evidently given, for the two-electron

Hookean atom, by

Γ (r1, r1, r′
1, r2) = Ψ (r1, r1)Ψ (r′

1, r2) = γ (r1, r2)

γ (0, 0)

Ψ (0, 0)

χ(r1, r2)
· γ (r

′
1, r2)

γ (0, 0)

Ψ (0, 0)

χ(r′
1, r2)

.

(18)

But from Eq. (2), Ψ (0, 0) = C , and hence

Γ (r1, r1, r′
1, r2) = C2

χ(r1, r2)χ(r′
1, r2)

γ (r1, r2)γ (r′
1, r2), (19)
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where it is again to be noted that χ(r1, r2) is determined solely by the analytically
known centre-of-mass wave function given as proportional to exp(−|r1 + r2|2/8) in
Eq. (2) above.

What is therefore remarkable to us is that, for the Hookean atom, the DM Euler–
Lagrange (EL) equation for the correlated 1DM γ (r1, r2) closes, to read [14]

− h̄2

2m

(
∇2

r1
− ∇2

r2

)
γ (r1, r2)+ [Vext(r1)− Vext(r2)]γ (r1, r2)

+
∫

dr[u(|r1 − r|)− u(|r2 − r|)]Γ (r1, r, r2, r) = 0. (20)

Inserting Eq. (19) into Eq. (20) then yields as an integrodifferential EL equation for
the correlated 1DM the closed equation

− h̄2

2m

(
∇2

r1
− ∇2

r2

)
γ (r1, r2)+ [Vext(r1)− Vext(r2)]γ (r1, r2)

+
∫

dr[u(|r1 − r|)− u(|r2 − r|)] C2

χ(r1, r)χ(r2, r)
γ (r1, r)γ (r2, r) = 0,

(21)

where χ is determined solely by ψCM(R).
There is, of course, extreme similarity to the Hartree-Fock method in Eq. (21). But

equally important is the fact that Eq. (21) for the Hookean atom can now be com-
pared with the formally exact result Eq. (6), for RH defined by Eq. (5). Hence, for the
Hookean (H) atom, the as yet unknown function FH(r1, r2) is given from Eq. (21) by

FH(r1, r2) = 2m

h̄2

∫
dr[u(r1 − r)− u(r2 − r)] C2

χ(r1, r)χ(r2, r)
γ (r1, r)γ (r2, r)

γ (r1, r2)
.

(22)

But, important for the connection with DFT emphasized above is the contact with the
DFT potential V (r) appearing in Eq. (9). This potential, as mentioned above, is already
known for the Hookean atom for force constant k = 1/4 a.u. from the early study
of Kais et al. [12]. Hence, an expression can be extracted for the function g(r′, r′′)
appearing in Eq. (9).
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